Metric learning seeks perceptual embeddings where visually similar instances are close and dissimilar instances are apart, but learn representation can be sub-optimal when the distribution of intra-class samples is diverse and distinct sub-clusters are present. We theoretically prove and empirically show that under reasonable noise assumptions, prevalent embedding losses in metric learning, e.g., triplet loss, tend to project all samples of a class with various modes onto a single point in the embedding space, resulting in class collapse that usually renders the space ill-sorted for classification or retrieval. To address this problem, we propose a simple modification to the embedding losses such that each sample selects its nearest same-class counterpart in a batch as the positive element in the tuple. This allows for the presence of multiple sub-clusters within each class. The adaptation can be integrated into a wide range of metric learning losses. Our method demonstrates clear benefits on various fine-grained image retrieval datasets over a variety of existing losses; qualitative retrieval results show that samples with similar visual patterns are indeed closer in the embedding space.