Graph neural networks (GNNs) have been shown promising in optimizing power allocation and link scheduling with good size generalizability and low training complexity. These merits are important for learning wireless policies under dynamic environments, which partially come from the matched permutation equivariance (PE) properties of the GNNs to the policies to be learned. Nonetheless, it has been noticed in literature that only satisfying the PE property of a precoding policy in multi-antenna systems cannot ensure a GNN for learning precoding to be generalizable to the unseen number of users. Incorporating models with GNNs helps improve size generalizability, which however is only applicable to specific problems, settings, and algorithms. In this paper, we propose a framework of size generalizable GNNs for learning precoding policies that are purely data-driven and can learn wireless policies including but not limited to baseband and hybrid precoding in multi-user multi-antenna systems. To this end, we first find a special structure of each iteration of two numerical algorithms for optimizing precoding, from which we identify the key characteristics of a GNN that affect its size generalizability. Then, we design size-generalizable GNNs that are with these key characteristics and satisfy the PE properties of precoding policies in a recursive manner. Simulation results show that the proposed GNNs can be well-generalized to the number of users for learning baseband and hybrid precoding policies and require much fewer samples than existing counterparts to achieve the same performance.