This paper presented our work on applying Recurrent Deep Stacking Networks (RDSNs) to Robust Automatic Speech Recognition (ASR) tasks. In the paper, we also proposed a more efficient yet comparable substitute to RDSN, Bi- Pass Stacking Network (BPSN). The main idea of these two models is to add phoneme-level information into acoustic models, transforming an acoustic model to the combination of an acoustic model and a phoneme-level N-gram model. Experiments showed that RDSN and BPsn can substantially improve the performances over conventional DNNs.