Conventional active array radars often jointly design the transmit and receive beamforming for effectively suppressing interferences. To further promote the interference suppression performance, this paper introduces a reconfigurable intelligent surface (RIS) to assist the radar receiver because the RIS has the ability to bring plentiful additional degrees-of-freedom. To maximize the output signal-to-interference-plus-noise ratio (SINR) of receive array, we formulate the codesign of transmit beamforming and RIS-assisted receive beamforming into a nonconvex constrained fractional programming problem, and then propose an alternating minimization-based algorithm to jointly optimize the transmitor beamfmer, receive beamformer and RIS reflection coefficients. Concretely, we translate the RIS reflection coefficients design into a series of unimodular quadratic programming (UQP) subproblems by employing the Dinkelbach transform, and offer the closed-form optimal solutions of transmit and receive beamformers according to the minimum variance distortionless response principle. To tackle the UQP subproblems efficiently, we propose a second-order Riemannian Newton method (RNM) with improved Riemannian Newton direction, which avoids the line search and has better convergence speed than typical first-order Riemannian manifold optimization methods. Moreover, we derive the convergence of the proposed codesign algorithm by deducing the explicit convergence condition of RNM. We also analyze the computational complexity. Numerical results demonstrate that the proposed RIS-assisted array radar has superior performance of interference suppression to the RIS-free one, and the SINR improvement is proportional to the number of RIS elements.