This study presents a robust and efficient client selection protocol designed to optimize the Federated Learning (FL) process for the Federated Tumor Segmentation Challenge (FeTS 2024). In the evolving landscape of FL, the judicious selection of collaborators emerges as a critical determinant for the success and efficiency of collective learning endeavors, particularly in domains requiring high precision. This work introduces a recommender engine framework based on non-negative matrix factorization (NNMF) and a hybrid aggregation approach that blends content-based and collaborative filtering. This method intelligently analyzes historical performance, expertise, and other relevant metrics to identify the most suitable collaborators. This approach not only addresses the cold start problem where new or inactive collaborators pose selection challenges due to limited data but also significantly improves the precision and efficiency of the FL process. Additionally, we propose harmonic similarity weight aggregation (HSimAgg) for adaptive aggregation of model parameters. We utilized a dataset comprising 1,251 multi-parametric magnetic resonance imaging (mpMRI) scans from individuals diagnosed with glioblastoma (GBM) for training purposes and an additional 219 mpMRI scans for external evaluations. Our federated tumor segmentation approach achieved dice scores of 0.7298, 0.7424, and 0.8218 for enhancing tumor (ET), tumor core (TC), and whole tumor (WT) segmentation tasks respectively on the external validation set. In conclusion, this research demonstrates that selecting collaborators with expertise aligned to specific tasks, like brain tumor segmentation, improves the effectiveness of FL networks.