Soft deployable structures - unlike conventional piecewise rigid deployables based on hinges and springs - can assume intricate 3-D shapes, thereby enabling transformative technologies in soft robotics, shape-morphing architecture, and pop-up manufacturing. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse design problem involving this class of structures: to achieve desired 3D structures it typically requires manufacturing technologies with extensive local actuation and control during fabrication, and a trial and error search over a large design space. We address both of these shortcomings by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3-D shapes by designing the appropriate kirigami cuts and selecting the right amount of prestretch, thereby eliminating the need for local control. Second, we formulate a data-driven physics-guided framework that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the ``latent" parameter space in an active learning approach. We demonstrate the effectiveness of the rapid design procedure via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Tabletop experiments are conducted to fabricate the target shapes. Experimental results and numerical predictions from our framework are found to be in good agreement.