We consider the problem of private set membership aggregation of $N$ parties by using an entangled quantum state. In this setting, the $N$ parties, which share an entangled state, aim to \emph{privately} know the number of times each element (message) is repeated among the $N$ parties, with respect to a universal set $\mathcal{K}$. This problem has applications in private comparison, ranking, voting, etc. We propose an encoding algorithm that maps the classical information into distinguishable quantum states, along with a decoding algorithm that exploits the distinguishability of the mapped states. The proposed scheme can also be used to calculate the $N$ party private summation modulo $P$.