A recently introduced text classifier, called SS3, has obtained state-of-the-art performance on the CLEF's eRisk tasks. SS3 was created to deal with risk detection over text streams and therefore not only supports incremental training and classification but also can visually explain its rationale. However, little attention has been paid to the potential use of SS3 as a general classifier. We believe this could be due to the unavailability of an open-source implementation of SS3. In this work, we introduce PySS3, a package that not only implements SS3 but also comes with visualization tools that allow researchers deploying robust, explainable and trusty machine learning models for text classification.