Logic-based abduction finds important applications in artificial intelligence and related areas. One application example is in finding explanations for observed phenomena. Propositional abduction is a restriction of abduction to the propositional domain, and complexity-wise is in the second level of the polynomial hierarchy. Recent work has shown that exploiting implicit hitting sets and propositional satisfiability (SAT) solvers provides an efficient approach for propositional abduction. This paper investigates this earlier work and proposes a number of algorithmic improvements. These improvements are shown to yield exponential reductions in the number of SAT solver calls. More importantly, the experimental results show significant performance improvements compared to the the best approaches for propositional abduction.