In the rapidly evolving field of machine learning, training models with datasets from various locations and organizations presents significant challenges due to privacy and legal concerns. The exploration of effective collaborative training settings capable of leveraging valuable knowledge from distributed and isolated datasets is increasingly crucial. This study investigates key factors that impact the effectiveness of collaborative training methods in code next-token prediction, as well as the correctness and utility of the generated code, demonstrating the promise of such methods. Additionally, we evaluate the memorization of different participant training data across various collaborative training settings, including centralized, federated, and incremental training, highlighting their potential risks in leaking data. Our findings indicate that the size and diversity of code datasets are pivotal factors influencing the success of collaboratively trained code models. We show that federated learning achieves competitive performance compared to centralized training while offering better data protection, as evidenced by lower memorization ratios in the generated code. However, federated learning can still produce verbatim code snippets from hidden training data, potentially violating privacy or copyright. Our study further explores effectiveness and memorization patterns in incremental learning, emphasizing the sequence in which individual participant datasets are introduced. We also identify cross-organizational clones as a prevalent challenge in both centralized and federated learning scenarios. Our findings highlight the persistent risk of data leakage during inference, even when training data remains unseen. We conclude with recommendations for practitioners and researchers to optimize multisource datasets, propelling cross-organizational collaboration forward.