This work presents the first projection-free algorithm to solve stochastic bi-level optimization problems, where the objective function depends on the solution of another stochastic optimization problem. The proposed $\textbf{S}$tochastic $\textbf{Bi}$-level $\textbf{F}$rank-$\textbf{W}$olfe ($\textbf{SBFW}$) algorithm can be applied to streaming settings and does not make use of large batches or checkpoints. The sample complexity of SBFW is shown to be $\mathcal{O}(\epsilon^{-3})$ for convex objectives and $\mathcal{O}(\epsilon^{-4})$ for non-convex objectives. Improved rates are derived for the stochastic compositional problem, which is a special case of the bi-level problem, and entails minimizing the composition of two expected-value functions. The proposed $\textbf{S}$tochastic $\textbf{C}$ompositional $\textbf{F}$rank-$\textbf{W}$olfe ($\textbf{SCFW}$) is shown to achieve a sample complexity of $\mathcal{O}(\epsilon^{-2})$ for convex objectives and $\mathcal{O}(\epsilon^{-3})$ for non-convex objectives, at par with the state-of-the-art sample complexities for projection-free algorithms solving single-level problems. We demonstrate the advantage of the proposed methods by solving the problem of matrix completion with denoising and the problem of policy value evaluation in reinforcement learning.