Deep Reinforcement Learning (DRL) policies are critically vulnerable to adversarial noise in observations, posing severe risks in safety-critical scenarios. For example, a self-driving car receiving manipulated sensory inputs about traffic signs could lead to catastrophic outcomes. Existing strategies to fortify RL algorithms against such adversarial perturbations generally fall into two categories: (a) using regularization methods that enhance robustness by incorporating adversarial loss terms into the value objectives, and (b) adopting "maximin" principles, which focus on maximizing the minimum value to ensure robustness. While regularization methods reduce the likelihood of successful attacks, their effectiveness drops significantly if an attack does succeed. On the other hand, maximin objectives, although robust, tend to be overly conservative. To address this challenge, we introduce a novel objective called Adversarial Counterfactual Error (ACoE), which naturally balances optimizing value and robustness against adversarial attacks. To optimize ACoE in a scalable manner in model-free settings, we propose a theoretically justified surrogate objective known as Cumulative-ACoE (C-ACoE). The core idea of optimizing C-ACoE is utilizing the belief about the underlying true state given the adversarially perturbed observation. Our empirical evaluations demonstrate that our method outperforms current state-of-the-art approaches for addressing adversarial RL problems across all established benchmarks (MuJoCo, Atari, and Highway) used in the literature.