In this paper, we propose a movable antenna (MA) empowered scheme for symbiotic radio (SR) communication systems. Specifically, multiple antennas at the primary transmitter (PT) can be flexibly moved to favorable locations to boost the channel conditions of the primary and secondary transmissions. The primary transmission is achieved by the active transmission from the PT to the primary user (PU), while the backscatter device (BD) takes a ride over the incident signal from the PT to passively send the secondary signal to the PU. Under this setup, we consider a primary rate maximization problem by jointly optimizing the transmit beamforming and the positions of MAs at the PT under a practical bit error rate constraint on the secondary transmission. Then, an alternating optimization framework with the utilization of the successive convex approximation, semi-definite processing and simulated annealing (SA) modified particle swarm optimization (SA-PSO) methods is proposed to find the solution of the transmit beamforming and MAs' positions. Finally, numerical results are provided to demonstrate the performance improvement provided by the proposed MA empowered scheme and the proposed algorithm.