https://github.com/xiaohemaikoo/axolotl24-ABDN-NLP}}.
In this work, we outline the components and results of our system submitted to the AXOLOTL-24 shared task for Finnish, Russian and German languages. Our system is fully unsupervised. It leverages a graph-based clustering approach to predict mappings between unknown word usages and dictionary entries for Subtask 1, and generates dictionary-like definitions for those novel word usages through the state-of-the-art Large Language Models such as GPT-4 and LLaMA-3 for Subtask 2. In Subtask 1, our system outperforms the baseline system by a large margin, and it offers interpretability for the mapping results by distinguishing between matched and unmatched (novel) word usages through our graph-based clustering approach. Our system ranks first in Finnish and German, and ranks second in Russian on the Subtask 2 test-phase leaderboard. These results show the potential of our system in managing dictionary entries, particularly for updating dictionaries to include novel sense entries. Our code and data are made publicly available\footnote{\url{