Distinguishing sources of predictive uncertainty is of crucial importance in the application of forecasting models across various domains. Despite the presence of a great variety of proposed uncertainty measures, there are no strict definitions to disentangle them. Furthermore, the relationship between different measures of uncertainty quantification remains somewhat unclear. In this work, we introduce a general framework, rooted in statistical reasoning, which not only allows the creation of new uncertainty measures but also clarifies their interrelations. Our approach leverages statistical risk to distinguish aleatoric and epistemic uncertainty components and utilizes proper scoring rules to quantify them. To make it practically tractable, we propose an idea to incorporate Bayesian reasoning into this framework and discuss the properties of the proposed approximation.