Objective Maps of B0 field inhomogeneities are often used to improve MRI image quality, even in a retrospective fashion. These field inhomogeneities depend on the exact head position within the static field but acquiring field maps (FM) at every position is time consuming. Here we explore different ways to obtain B0 predictions at different head positions. Methods FM were predicted from iterative simulations with four field factors: 1) sample induced B0 field, 2) system's spherical harmonic shim field, 3) perturbing field originating outside the field of view, 4) sequence phase errors. The simulation was improved by including local susceptibility sources estimated from UTE scans and position-specific masks. The estimation performance of the simulated FMs and a transformed FM, obtained from the measured reference FM, were compared with the actual FM at different head positions. Results The transformed FM provided inconsistent results for large head movements (>5 degree rotation), while the simulation strategy had a superior prediction accuracy for all positions. The simulated FM was used to optimize B0 shims with up to 22.2% improvement with respect to the transformed FM approach. Conclusion The proposed simulation strategy is able to predict movement induced B0 field inhomogeneities yielding more precise estimates of the ground truth field homogeneity than the transformed FM.