Finding the initial conditions that led to the current state of the universe is challenging because it involves searching over a vast input space of initial conditions, along with modeling their evolution via tools such as N-body simulations which are computationally expensive. Deep learning has emerged as an alternate modeling tool that can learn the mapping between the linear input of an N-body simulation and the final nonlinear displacements at redshift zero, which can significantly accelerate the forward modeling. However, this does not help reduce the search space for initial conditions. In this paper, we demonstrate for the first time that a deep learning model can be trained for the reverse mapping. We train a V-Net based convolutional neural network, which outputs the linear displacement of an N-body system, given the current time nonlinear displacement and the cosmological parameters of the system. We demonstrate that this neural network accurately recovers the initial linear displacement field over a wide range of scales ($<1$-$2\%$ error up to nearly $k = 1\ \mathrm{Mpc}^{-1}\,h$), despite the ill-defined nature of the inverse problem at smaller scales. Specifically, smaller scales are dominated by nonlinear effects which makes the backward dynamics much more susceptible to numerical and computational errors leading to highly divergent backward trajectories and a one-to-many backward mapping. The results of our method motivate that neural network based models can act as good approximators of the initial linear states and their predictions can serve as good starting points for sampling-based methods to infer the initial states of the universe.