This paper proposes a data driven model to predict the performance of a face recognition system based on image quality features. We model the relationship between image quality features (e.g. pose, illumination, etc.) and recognition performance measures using a probability density function. To address the issue of limited nature of practical training data inherent in most data driven models, we have developed a Bayesian approach to model the distribution of recognition performance measures in small regions of the quality space. Since the model is based solely on image quality features, it can predict performance even before the actual recognition has taken place. We evaluate the performance predictive capabilities of the proposed model for six face recognition systems (two commercial and four open source) operating on three independent data sets: MultiPIE, FRGC and CAS-PEAL. Our results show that the proposed model can accurately predict performance using an accurate and unbiased Image Quality Assessor (IQA). Furthermore, our experiments highlight the impact of the unaccounted quality space -- the image quality features not considered by IQA -- in contributing to performance prediction errors.