Text generation is increasingly common but often requires manual post-editing where high precision is critical to end users. However, manual editing is expensive so we want to ensure this effort is focused on high-value tasks. And we want to maintain stylistic consistency, a particular challenge in crowd settings. We present a case study, analysing human post-editing in the context of a template-based biography generation system. An edit flow visualisation combined with manual characterisation of edits helps identify and prioritise work for improving end-to-end efficiency and accuracy.