Artificially intelligent (AI) agents that are capable of autonomous learning and independent decision-making hold great promise for addressing complex challenges across domains like transportation, energy systems, and manufacturing. However, the surge in AI systems' design and deployment driven by various stakeholders with distinct and unaligned objectives introduces a crucial challenge: how can uncoordinated AI systems coexist and evolve harmoniously in shared environments without creating chaos? To address this, we advocate for a fundamental rethinking of existing multi-agent frameworks, such as multi-agent systems and game theory, which are largely limited to predefined rules and static objective structures. We posit that AI agents should be empowered to dynamically adjust their objectives, make compromises, form coalitions, and safely compete or cooperate through evolving relationships and social feedback. Through this paper, we call for a shift toward the emergent, self-organizing, and context-aware nature of these systems.