We study a generalization of the classic Online Convex Optimization (OCO) framework by considering additional long-term adversarial constraints. Specifically, after an online policy decides its action on a round, in addition to a convex cost function, the adversary also reveals a set of $k$ convex constraints. The cost and the constraint functions could change arbitrarily with time, and no information about the future functions is assumed to be available. In this paper, we propose a meta-policy that simultaneously achieves a sublinear cumulative constraint violation and a sublinear regret. This is achieved via a black box reduction of the constrained problem to the standard OCO problem for a recursively constructed sequence of surrogate cost functions. We show that optimal performance bounds can be achieved by solving the surrogate problem using any adaptive OCO policy enjoying a standard data-dependent regret bound. A new Lyapunov-based proof technique is presented that reveals a connection between regret and certain sequential inequalities through a novel decomposition result. We conclude the paper by highlighting applications to online multi-task learning and network control problems.