Table-to-Text has been traditionally approached as a linear language to text problem. However, visually represented tables are rich in visual information and serve as a concise, effective form of representing data and its relationships. When using text-based approaches, after the linearization process, this information is either lost or represented in a space inefficient manner. This inefficiency has remained a constant challenge for text-based approaches making them struggle with large tables. In this paper, we demonstrate that image representation of tables are more space-efficient than the typical textual linearizations, and multi-modal approaches are competitive in Table-to-Text tasks. We present PixT3, a multimodal table-to-text model that outperforms the state-of-the-art (SotA) in the ToTTo benchmark in a pure Table-to-Text setting while remaining competitive in controlled Table-to-Text scenarios. It also generalizes better in unseen datasets, outperforming ToTTo SotA in all generation settings. Additionally, we introduce a new intermediate training curriculum to reinforce table structural awareness, leading to improved generation and overall faithfulness of the models.