In this paper, we propose a novel DNN watermarking method that utilizes a learnable image transformation method with a secret key. The proposed method embeds a watermark pattern in a model by using learnable transformed images and allows us to remotely verify the ownership of the model. As a result, it is piracy-resistant, so the original watermark cannot be overwritten by a pirated watermark, and adding a new watermark decreases the model accuracy unlike most of the existing DNN watermarking methods. In addition, it does not require a special pre-defined training set or trigger set. We empirically evaluated the proposed method on the CIFAR-10 dataset. The results show that it was resilient against fine-tuning and pruning attacks while maintaining a high watermark-detection accuracy.