In this paper, we present a novel point generation model, referred to as Pillar-based Point Generation Network (PillarGen), which facilitates the transformation of point clouds from one domain into another. PillarGen can produce synthetic point clouds with enhanced density and quality based on the provided input point clouds. The PillarGen model performs the following three steps: 1) pillar encoding, 2) Occupied Pillar Prediction (OPP), and 3) Pillar to Point Generation (PPG). The input point clouds are encoded using a pillar grid structure to generate pillar features. Then, OPP determines the active pillars used for point generation and predicts the center of points and the number of points to be generated for each active pillar. PPG generates the synthetic points for each active pillar based on the information provided by OPP. We evaluate the performance of PillarGen using our proprietary radar dataset, focusing on enhancing the density and quality of short-range radar data using the long-range radar data as supervision. Our experiments demonstrate that PillarGen outperforms traditional point upsampling methods in quantitative and qualitative measures. We also confirm that when PillarGen is incorporated into bird's eye view object detection, a significant improvement in detection accuracy is achieved.