Many currently available universal approximation theorems affirm that deep feedforward networks defined using any suitable activation function can approximate any integrable function locally in $L^1$-norm. Though different approximation rates are available for deep neural networks defined using other classes of activation functions, there is little explanation for the empirically confirmed advantage that ReLU networks exhibit over their classical (e.g. sigmoidal) counterparts. Our main result demonstrates that deep networks with piecewise linear activation (e.g. ReLU or PReLU) are fundamentally more expressive than deep feedforward networks with analytic (e.g. sigmoid, Swish, GeLU, or Softplus). More specifically, we construct a strict refinement of the topology on the space $L^1_{\operatorname{loc}}(\mathbb{R}^d,\mathbb{R}^D)$ of locally Lebesgue-integrable functions, in which the set of deep ReLU networks with (bilinear) pooling $\operatorname{NN}^{\operatorname{ReLU} + \operatorname{Pool}}$ is dense (i.e. universal) but the set of deep feedforward networks defined using any combination of analytic activation functions with (or without) pooling layers $\operatorname{NN}^{\omega+\operatorname{Pool}}$ is not dense (i.e. not universal). Our main result is further explained by \textit{quantitatively} demonstrating that this "separation phenomenon" between the networks in $\operatorname{NN}^{\operatorname{ReLU}+\operatorname{Pool}}$ and those in $\operatorname{NN}^{\omega+\operatorname{Pool}}$ by showing that the networks in $\operatorname{NN}^{\operatorname{ReLU}}$ are capable of approximate any compactly supported Lipschitz function while \textit{simultaneously} approximating its essential support; whereas, the networks in $\operatorname{NN}^{\omega+\operatorname{pool}}$ cannot.