Dynamical systems involving partial differential equations (PDEs) and ordinary differential equations (ODEs) arise in many fields of science and engineering. In this paper, we present a physics-incorporated deep learning framework to model and predict the spatiotemporal evolution of dynamical systems governed by partially-known inhomogenous PDEs with unobservable source dynamics. We formulate our model PhICNet as a convolutional recurrent neural network which is end-to-end trainable for spatiotemporal evolution prediction of dynamical systems. Experimental results show the long-term prediction capability of our model.