Multimodal reasoning, an area of artificial intelligence that aims at make inferences from multimodal signals such as vision, language and speech, has drawn more and more attention in recent years. People with different personalities may respond differently to the same situation. However, such individual personalities were ignored in the previous studies. In this work, we introduce a new Personality-aware Human-centric Multimodal Reasoning (Personality-aware HMR) task, and accordingly construct a new dataset based on The Big Bang Theory television shows, to predict the behavior of a specific person at a specific moment, given the multimodal information of its past and future moments. The Myers-Briggs Type Indicator (MBTI) was annotated and utilized in the task to represent individuals' personalities. We benchmark the task by proposing three baseline methods, two were adapted from the related tasks and one was newly proposed for our task. The experimental results demonstrate that personality can effectively improve the performance of human-centric multimodal reasoning. To further solve the lack of personality annotation in real-life scenes, we introduce an extended task called Personality-predicted HMR, and propose the corresponding methods, to predict the MBTI personality at first, and then use the predicted personality to help multimodal reasoning. The experimental results show that our method can accurately predict personality and achieves satisfactory multimodal reasoning performance without relying on personality annotations.