Emotion recognition aims to interpret the emotional states of a person based on various inputs including audio, visual, and textual cues. This paper focuses on emotion recognition using visual features. To leverage the correlation between facial expression and the emotional state of a person, pioneering methods rely primarily on facial features. However, facial features are often unreliable in natural unconstrained scenarios, such as in crowded scenes, as the face lacks pixel resolution and contains artifacts due to occlusion and blur. To address this, in the wild emotion recognition exploits full-body person crops as well as the surrounding scene context. In a bid to use body pose for emotion recognition, such methods fail to realize the potential that facial expressions, when available, offer. Thus, the aim of this paper is two-fold. First, we demonstrate our method, PERI, to leverage both body pose and facial landmarks. We create part aware spatial (PAS) images by extracting key regions from the input image using a mask generated from both body pose and facial landmarks. This allows us to exploit body pose in addition to facial context whenever available. Second, to reason from the PAS images, we introduce context infusion (Cont-In) blocks. These blocks attend to part-specific information, and pass them onto the intermediate features of an emotion recognition network. Our approach is conceptually simple and can be applied to any existing emotion recognition method. We provide our results on the publicly available in the wild EMOTIC dataset. Compared to existing methods, PERI achieves superior performance and leads to significant improvements in the mAP of emotion categories, while decreasing Valence, Arousal and Dominance errors. Importantly, we observe that our method improves performance in both images with fully visible faces as well as in images with occluded or blurred faces.