Human reconstruction from multi-view images plays an important role in many applications. Although neural rendering methods have achieved promising results on synthesising realistic images, it is still difficult to handle the ambiguity between the geometry and appearance using only rendering loss. Moreover, it is very computationally intensive to render a whole image as each pixel requires a forward network inference. To tackle these challenges, we propose a novel approach called \emph{PatchShading} to reconstruct high-quality mesh of human body from multi-view posed images. We first present a patch warping strategy to constrain multi-view photometric consistency explicitly. Second, we adopt sphere harmonics (SH) illumination and shape from shading image formation to further refine the geometric details. By taking advantage of the oriented point clouds shape representation and SH shading, our proposed method significantly reduce the optimization and rendering time compared to those implicit methods. The encouraging results on both synthetic and real-world datasets demonstrate the efficacy of our proposed approach.