We develop a novel technique to parse English sentences into Abstract Meaning Representation (AMR) using SEARN, a Learning to Search approach, by modeling the concept and the relation learning in a unified framework. We evaluate our parser on multiple datasets from varied domains and show an absolute improvement of 2% to 6% over the state-of-the-art. Additionally we show that using the most frequent concept gives us a baseline that is stronger than the state-of-the-art for concept prediction. We plan to release our parser for public use.