This paper presents the results of the shared task on Chinese metaphor generation, hosted at the 13th CCF Conference on Natural Language Processing and Chinese Computing (NLPCC 2024). The goal of this shared task is to generate Chinese metaphors using machine learning techniques and effectively identifying basic components of metaphorical sentences. It is divided into two subtasks: 1) Metaphor Generation, which involves creating a metaphor from a provided tuple consisting of TENOR, GROUND, and VEHICLE. The goal here is to synthesize a metaphor that connects the subject (i.e. TENOR) with the object (i.e. VEHICLE), guided by the concept of the GROUND. 2) Metaphor Components Identification, which extracts the most fitting TENORs, GROUNDs, and VEHICLEs from a metaphorical sentence. This component requires the identification of the most fitting metaphor elements that correspond to the specified grounds. In addition to overall results, we report on the setup and insights from the metaphor generation shared task, which attracted a total of 4 participating teams across both subtasks.