We consider the random feature ridge regression (RFRR) given by a two-layer neural network at random initialization. We study the non-asymptotic behaviors of the training error, cross-validations, and generalization error of RFRR with nearly orthogonal deterministic input data in the overparameterized regime, where the number of parameters $N$ is much larger than the sample size $n$. We respectively establish the concentrations of the training errors, cross-validations, and generalization errors of RFRR around their corresponding errors of kernel ridge regression (KRR). This KRR is defined by an expected kernel from a random feature map. We then approximate the performances of the KRR by a polynomial kernel matrix, whose degree only depends on the orthogonality among different input vectors. The degree of this polynomial kernel essentially determines the asymptotic behavior of RFRR and KRR. Our results hold for a general class of target functions and input data with weak approximate orthonormal properties among different data points. Based on these approximations and nearly orthogonality, we obtain a lower bound for the generalization error of RFRR.