Model predictive control (MPC) is increasingly being considered for control of fast systems and embedded applications. However, the MPC has some significant challenges for such systems. Its high computational complexity results in high power consumption from the control algorithm, which could account for a significant share of the energy resources in battery-powered embedded systems. The MPC parameters must be tuned, which is largely a trial-and-error process that affects the control performance, the robustness and the computational complexity of the controller to a high degree. In this paper, we propose a novel framework in which any parameter of the control algorithm can be jointly tuned using reinforcement learning(RL), with the goal of simultaneously optimizing the control performance and the power usage of the control algorithm. We propose the novel idea of optimizing the meta-parameters of MPCwith RL, i.e. parameters affecting the structure of the MPCproblem as opposed to the solution to a given problem. Our control algorithm is based on an event-triggered MPC where we learn when the MPC should be re-computed, and a dual mode MPC and linear state feedback control law applied in between MPC computations. We formulate a novel mixture-distribution policy and show that with joint optimization we achieve improvements that do not present themselves when optimizing the same parameters in isolation. We demonstrate our framework on the inverted pendulum control task, reducing the total computation time of the control system by 36% while also improving the control performance by 18.4% over the best-performing MPC baseline.