Maximizing storage performance in geological carbon storage (GCS) is crucial for commercial deployment, but traditional optimization demands resource-intensive simulations, posing computational challenges. This study introduces the multimodal latent dynamic (MLD) model, a deep learning framework for fast flow prediction and well control optimization in GCS. The MLD model includes a representation module for compressed latent representations, a transition module for system state evolution, and a prediction module for flow responses. A novel training strategy combining regression loss and joint-embedding consistency loss enhances temporal consistency and multi-step prediction accuracy. Unlike existing models, the MLD supports diverse input modalities, allowing comprehensive data interactions. The MLD model, resembling a Markov decision process (MDP), can train deep reinforcement learning agents, specifically using the soft actor-critic (SAC) algorithm, to maximize net present value (NPV) through continuous interactions. The approach outperforms traditional methods, achieving the highest NPV while reducing computational resources by over 60%. It also demonstrates strong generalization performance, providing improved decisions for new scenarios based on knowledge from previous ones.