AI/ML-based tools are at the forefront of resource management solutions for communication networks. Deep learning, in particular, is highly effective in facilitating fast and high-performing decision-making whenever representative training data is available to build offline accurate models. Conversely, online learning solutions do not require training and enable adaptive decisions based on runtime observations, alas are often overly conservative. This extensive tutorial proposes the use of optimistic learning (OpL) as a decision engine for resource management frameworks in modern communication systems. When properly designed, such solutions can achieve fast and high-performing decisions -- comparable to offline-trained models -- while preserving the robustness and performance guarantees of the respective online learning approaches. We introduce the fundamental concepts, algorithms and results of OpL, discuss the roots of this theory and present different approaches to defining and achieving optimism. We proceed to showcase how OpL can enhance resource management in communication networks for several key problems such as caching, edge computing, network slicing, and workload assignment in decentralized O-RAN platforms. Finally, we discuss the open challenges that must be addressed to unlock the full potential of this new resource management approach.