We study the problem of differentially private linear regression where each data point is sampled from a fixed sub-Gaussian style distribution. We propose and analyze a one-pass mini-batch stochastic gradient descent method (DP-AMBSSGD) where points in each iteration are sampled without replacement. Noise is added for DP but the noise standard deviation is estimated online. Compared to existing $(\epsilon, \delta)$-DP techniques which have sub-optimal error bounds, DP-AMBSSGD is able to provide nearly optimal error bounds in terms of key parameters like dimensionality $d$, number of points $N$, and the standard deviation $\sigma$ of the noise in observations. For example, when the $d$-dimensional covariates are sampled i.i.d. from the normal distribution, then the excess error of DP-AMBSSGD due to privacy is $\frac{\sigma^2 d}{N}(1+\frac{d}{\epsilon^2 N})$, i.e., the error is meaningful when number of samples $N= \Omega(d \log d)$ which is the standard operative regime for linear regression. In contrast, error bounds for existing efficient methods in this setting are: $\mathcal{O}\big(\frac{d^3}{\epsilon^2 N^2}\big)$, even for $\sigma=0$. That is, for constant $\epsilon$, the existing techniques require $N=\Omega(d\sqrt{d})$ to provide a non-trivial result.