In competitive games, strength ratings like Elo are widely used to quantify player skill and support matchmaking by accounting for skill disparities better than simple win rate statistics. However, scalar ratings cannot handle complex intransitive relationships, such as counter strategies seen in Rock-Paper-Scissors. To address this, recent work introduced Neural Rating Table and Neural Counter Table, which combine scalar ratings with discrete counter categories to model intransitivity. While effective, these methods rely on neural network training and cannot perform real-time updates. In this paper, we propose an online update algorithm that extends Elo principles to incorporate real-time learning of counter categories. Our method dynamically adjusts both ratings and counter relationships after each match, preserving the explainability of scalar ratings while addressing intransitivity. Experiments on zero-sum competitive games demonstrate its practicality, particularly in scenarios without complex team compositions.