The effectiveness of training neural networks directly impacts computational costs, resource allocation, and model development timelines in machine learning applications. An optimizer's ability to train the model adequately (in terms of trained model performance) depends on the model's initial weights. Model weight initialization schemes use pseudorandom number generators (PRNGs) as a source of randomness. We investigate whether substituting PRNGs for low-discrepancy quasirandom number generators (QRNGs) -- namely Sobol' sequences -- as a source of randomness for initializers can improve model performance. We examine Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Transformer architectures trained on MNIST, CIFAR-10, and IMDB datasets using SGD and Adam optimizers. Our analysis uses ten initialization schemes: Glorot, He, Lecun (both Uniform and Normal); Orthogonal, Random Normal, Truncated Normal, and Random Uniform. Models with weights set using PRNG- and QRNG-based initializers are compared pairwise for each combination of dataset, architecture, optimizer, and initialization scheme. Our findings indicate that QRNG-based neural network initializers either reach a higher accuracy or achieve the same accuracy more quickly than PRNG-based initializers in 60% of the 120 experiments conducted. Thus, using QRNG-based initializers instead of PRNG-based initializers can speed up and improve model training.