We propose a new model for relational VAE semi-supervision capable of balancing disentanglement and low complexity modelling of relations with different symbolic properties. We compare the relative benefits of relation-decoder complexity and latent space structure on both inductive and transductive transfer learning. Our results depict a complex picture where enforcing structure on semi-supervised representations can greatly improve zero-shot transductive transfer, but may be less favourable or even impact negatively the capacity for inductive transfer.