The applicability of Large Language Models (LLMs) in temporal reasoning tasks over data that is not present during training is still a field that remains to be explored. In this paper we work on this topic, focusing on structured and semi-structured anonymized data. We not only develop a direct LLM pipeline, but also compare various methodologies and conduct an in-depth analysis. We identified and examined seventeen common temporal reasoning tasks in natural language, focusing on their algorithmic components. To assess LLM performance, we created the \textit{Reasoning and Answering Temporal Ability} dataset (RATA), featuring semi-structured anonymized data to ensure reliance on reasoning rather than on prior knowledge. We compared several methodologies, involving SoTA techniques such as Tree-of-Thought, self-reflexion and code execution, tuned specifically for this scenario. Our results suggest that achieving scalable and reliable solutions requires more than just standalone LLMs, highlighting the need for integrated approaches.