Adversarial Training (AT) is a widely-used algorithm for building robust neural networks, but it suffers from the issue of robust overfitting, the fundamental mechanism of which remains unclear. In this work, we consider normal data and adversarial perturbation as separate factors, and identify that the underlying causes of robust overfitting stem from the normal data through factor ablation in AT. Furthermore, we explain the onset of robust overfitting as a result of the model learning features that lack robust generalization, which we refer to as non-effective features. Specifically, we provide a detailed analysis of the generation of non-effective features and how they lead to robust overfitting. Additionally, we explain various empirical behaviors observed in robust overfitting and revisit different techniques to mitigate robust overfitting from the perspective of non-effective features, providing a comprehensive understanding of the robust overfitting phenomenon. This understanding inspires us to propose two measures, attack strength and data augmentation, to hinder the learning of non-effective features by the neural network, thereby alleviating robust overfitting. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed methods in mitigating robust overfitting and enhancing adversarial robustness.