The convergence of deterministic policy gradient under the Hadamard parametrization is studied in the tabular setting and the global linear convergence of the algorithm is established. To this end, we first show that the error decreases at an $O(\frac{1}{k})$ rate for all the iterations. Based on this result, we further show that the algorithm has a faster local linear convergence rate after $k_0$ iterations, where $k_0$ is a constant that only depends on the MDP problem and the step size. Overall, the algorithm displays a linear convergence rate for all the iterations with a loose constant than that for the local linear convergence rate.