Training generative models to produce synthetic data is meant to provide a privacy-friendly approach to data release. However, we get robust guarantees only when models are trained to satisfy Differential Privacy (DP). Alas, this is not the standard in industry as many companies use ad-hoc strategies to empirically evaluate privacy based on the statistical similarity between synthetic and real data. In this paper, we review the privacy metrics offered by leading companies in this space and shed light on a few critical flaws in reasoning about privacy entirely via empirical evaluations. We analyze the undesirable properties of the most popular metrics and filters and demonstrate their unreliability and inconsistency through counter-examples. We then present a reconstruction attack, ReconSyn, which successfully recovers (i.e., leaks all attributes of) at least 78% of the low-density train records (or outliers) with only black-box access to a single fitted generative model and the privacy metrics. Finally, we show that applying DP only to the model or using low-utility generators does not mitigate ReconSyn as the privacy leakage predominantly comes from the metrics. Overall, our work serves as a warning to practitioners not to deviate from established privacy-preserving mechanisms.