Reconfigurable Intelligent Surface (RIS) composed of programmable actuators is a promising technology, thanks to its capability in manipulating Electromagnetic (EM) wavefronts. In particular, RISs have the potential to provide significant performance improvements for wireless networks. However, to do so, a proper configuration of the reflection coefficients of the unit cells in the RIS is required. RISs are sophisticated platforms so the design and fabrication complexity might be uneconomical for single-user scenarios while a RIS that can service multi-users justifies the costs. For the first time, we propose an efficient reconfiguration technique providing the multi-beam radiation pattern. Thanks to the analytical model the reconfiguration profile is at hand compared to time-consuming optimization techniques. The outcome can pave the wave for commercial use of multi-user communication beyond 5G networks. We analyze the performance of our proposed RIS technology for indoor and outdoor scenarios, given the broadcast mode of operation. The aforesaid scenarios encompass some of the most challenging scenarios that wireless networks encounter. We show that our proposed technique provisions sufficient gains in the observed channel capacity when the users are close to the RIS in the indoor office environment scenario. Further, we report more than one order of magnitude increase in the system throughput given the outdoor environment. The results prove that RIS with the ability to communicate with multiple users can empower wireless networks with great capacity.