We consider the problem of model selection in a high-dimensional sparse linear regression model under the differential privacy framework. In particular, we consider the problem of differentially private best subset selection and study its utility guarantee. We adopt the well-known exponential mechanism for selecting the best model, and under a certain margin condition, we establish its strong model recovery property. However, the exponential search space of the exponential mechanism poses a serious computational bottleneck. To overcome this challenge, we propose a Metropolis-Hastings algorithm for the sampling step and establish its polynomial mixing time to its stationary distribution in the problem parameters $n,p$, and $s$. Furthermore, we also establish approximate differential privacy for the final estimates of the Metropolis-Hastings random walk using its mixing property. Finally, we also perform some illustrative simulations that echo the theoretical findings of our main results.