As many deep anomaly detection models have been deployed in the real-world, interpretable anomaly detection becomes an emerging task. Recent studies focus on identifying features of samples leading to abnormal outcomes but cannot recommend a set of actions to flip the abnormal outcomes. In this work, we focus on interpretations via algorithmic recourse that shows how to act to revert abnormal predictions by suggesting actions on features. The key challenge is that algorithmic recourse involves interventions in the physical world, which is fundamentally a causal problem. To tackle this challenge, we propose an interpretable Anomaly Detection framework using Causal Algorithmic Recourse (ADCAR), which recommends recourse actions and infers counterfactual of abnormal samples guided by the causal mechanism. Experiments on three datasets show that ADCAR can flip the abnormal labels with minimal interventions.