The application of graph signal processing (GSP) on partially observed graph signals with missing nodes has gained attention recently. This is because processing data from large graphs are difficult, if not impossible due to the lack of availability of full observations. Many prior works have been developed using the assumption that the generated graph signals are smooth or low pass filtered. This paper treats a blind graph filter detection problem under this context. We propose a detector that certifies whether the partially observed graph signals are low pass filtered, without requiring the graph topology knowledge. As an example application, our detector leads to a pre-screening method to filter out non low pass signals and thus robustify the prior GSP algorithms. We also bound the sample complexity of our detector in terms of the class of filters, number of observed nodes, etc. Numerical experiments verify the efficacy of our method.