Real-world project scheduling often requires flexibility in terms of the selection and the exact length of alternative production activities. Moreover, the simultaneous scheduling of multiple lots is mandatory in many production planning applications. To meet these requirements, a new flexible resource-constrained multi-project scheduling problem is introduced where both decisions (activity selection flexibility and time flexibility) are integrated. Besides the minimization of makespan, two alternative objectives inspired by a steel industry application case are presented: maximization of balanced length of selected activities (time balance) and maximization of balanced resource utilization (resource balance). New mixed integer and constraint programming (CP) models are proposed for the developed integrated flexible project scheduling problem. The real-world applicability of the suggested CP models is shown by solving large steel industry instances with the CP Optimizer of IBM ILOG CPLEX. Furthermore, benchmark instances on flexible resource-constrained project scheduling problems (RCPSP) are solved to optimality.