Model compression provides a means to efficiently deploy deep neural networks (DNNs) on devices that limited computation resources and tight power budgets, such as mobile and IoT (Internet of Things) devices. Consequently, model compression is one of the most critical topics in modern deep learning. Typically, the state-of-the-art model compression methods suffer from a big limitation: they are only based on heuristics rather than theoretical foundation and thus offer no worst-case guarantees. To bridge this gap, Baykal et. al. [2018a] suggested using a coreset, a small weighted subset of the data that provably approximates the original data set, to sparsify the parameters of a trained fully-connected neural network by sampling a number of neural network parameters based on the importance of the data. However, the sampling procedure is data-dependent and can only be only be performed after an expensive training phase. We propose the use of data-independent coresets to perform provable model compression without the need for training. We first prove that there exists a coreset whose size is independent of the input size of the data for any neuron whose activation function is from a family of functions that includes variants of ReLU, sigmoid and others. We then provide a compression-based algorithm that constructs these coresets and explicitly applies neuron pruning for the underlying model. We demonstrate the effectiveness of our methods with experimental evaluations for both synthetic and real-world benchmark network compression. In particular, our framework provides up to 90% compression on the LeNet-300-100 architecture on MNIST and actually improves the accuracy.