The effectiveness of graphical recommender system depends on the quantity and quality of negative sampling. This paper selects some typical recommender system models, as well as some latest negative sampling strategies on the models as baseline. Based on typical graphical recommender model, we divide sample region into assigned-n areas and use AdaSim to give different weight to these areas to form positive set and negative set. Because of the volume and significance of negative items, we also proposed a subset selection model to narrow the core negative samples.